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N U M E R I C A L  S T U D Y  OF T H E  S T O K E S  E Q U A T I O N S  

S. D. Algazin UDC 519.632.4 

The exterior problem for linearized stationary Navier-Stokes equations (Stokes equations) for flow 
around an axisymmetric body at small Reynolds numbers is considered. No assumptions are made as to the 
direction of the velocity vector in an undisturbed flow. Thus, the problem is three-dimensional in the general 
case. A numerical study of these equations showed that  they are poorly conditioned. A numerical algorithm for 
solving poorly conditioned Stokes equations is suggested. The algorithm has no saturation, i.e., the smoother 
the unknown solution, the higher the accuracy. 

1. F o r m u l a t i o n  of  the  P r o b l e m  and  C h o i c e  of  C o o r d i n a t e  S y s t e m .  In Cartesian coordinates 
(x], x2, x3), the system of Stokes equations has the form 

Op 1 e Avi, Oxi -- i = 1,2, 3 ; (1.1) 

Ov 1 Ov ~ Ov 3 
Ox-'-~ § ~x2 q- ~x3 = O, (1.2) 

where Re is the Reynolds number, (v l ,v2,  v 3) is the velocity vector, and p is pressure. Both dependent and 
independent variables that  enter Eqs. (1.1) and (1.2) are nondimensionalized by the standard procedure. The 
typical linear dimension La and the length of the flow velocity vector vor at infinity are taken as characteristic 
quantities. Then, for example, p = (P  - p ~ ) / ( p v 2 ) ,  where P is dimensional pressure, p is the density of the 
fluid, and p~  is the pressure in the undisturbed flow (at infinity). Thus, to determine the flow parameters, 
the velocity vector (v ], v 2, v3), and the pressure p, one has to find a solution of the system of equations (1.1) 
and (1.2) subject to ~he following boundary conditions: 

v i Ion = O, i = 1, 2, 3, v i 1~ = v~,i i = 1,2, 3, P I~ = O. 

i (i-= 1,2,3) is Here, f2 is the body in question, axisymmetric about the x3 axis, c3f~ is its boundary, and v~ 
the liquid velocity in the free stream (at infinity). 

As a consequence of Eqs. (1.1) and (1.2), we have 

Ap = 0, (1.3) 

that  is, the pressure is a harmonic function outside the axisymmetric body, a circumstance used below. 
We introduce a system of curvilinear coordinates (r, tg, r connected with the Cartesian coordinates 

(xl, x2, x3) through the relations [1] 

X l = V ( r , t ~ ) c o s ~ ,  x 2 = v ( r , ~ ) s i n ~ ,  x 3 = u ( r , d ) .  (1.4) 

We denote by G the region obtained by passing a meridional section through the body f~ and choose 
the functions u and v in the following manner. Let r  = u(r, tg)+ iv(r, ~) and z = r exp(iv~) be a conformal 
mapping of the circle Izl = r ~< 1 onto the exterior of the region G, with the center of the circle going 
into an infinitely distant point. It is convenient to regard (r, #, c2) as spherical coordinates, since in this case 
relations (1.4) define a mapping of the unit  ball onto the exterior of the body fL 
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For an ellipsoid of revolution about the x3 axis, 

x~ x 2 x3 2 
b -5  + Y + ~ = i (1.5) 

an analytical form for the functions u and v is known [2]. Relation (1.4) maps the surface of the unit ball onto 
the surface of fL The boundary conditions set on 0f~ are then transferred to the ball surface. The boundary 
conditions set at infinity are transferred to the ball center. 

Usually, when a curvilinear coordinate system is used, equations for vector quantities are written in 
terms of their projections onto the axes of their own basis, whose coordinate vectors are directed tangentially 
to the coordinates lines. This basis is dependent on the coordinates of the point in space. An approach like 
this is inconvenient in the present case because on the x3 axis relation (1.4) is no longer one-to-one (if v = 0, c2 
is arbitrary). This causes the appearance of singularities in the solution, which are conditioned by the "poor" 
choice of the coordinate system rather than by the essence of the problem. Note that the spherical coordinate 
system has a similar "shortcoming." 

The way out of this situation is as follows: we retain the projections of the velocity vector v i (i = 1,2, 3) 
onto the axes of the Cartesian coordinate system as sought-for functions but replace the independent variables 
xl, xz, and x3 with r, 0, and cy by substituting (1.4). We then get 

Op Op 1 Op 1 
- - sin~v - ( AV1 + f l ) ;  (1.6) a cos ~ ~ r  + fl cos !P ~-~ v 0c~ Re 

where 

Op Op 1 
as in  V O--~r + ~sin V 0"~ + v 

rye Op rvr Op 

w 2 Or w 2 O0 

OV i OV i 
a cos ~ ~ + fl cos ~ 00 

OV 2 1 OV 2 
+ fl sin c~ ---a-;-~ + - c o s ~  + - -  

v O ~  

Op _ 1 (AV2 + f2); (1.7) cos ~ 0~ Re 

= ~ ( AV3 + f3); (1.8) 
Re 

i . OV a OV 2 
sm i0 + a sin c 2 

v O~ Or 

rv,~ Op rvr Op 
= f4,  (1.9) 

w 2 Or w 2 O0 

carried out in order that the boundary conditions for the 

2 = -ru /w 2 (w2 = us  0) = (1 + 

( i =  1,2,3);  f4=G. cos +G, sin +Gr.o/  ; 
v ' =  (I- r )v~  + V i (i = 1,2,3). (1.10) 

The replacement of the unknown functions v i by V i (i = 1, 2, 3) in accordance with formula (1.0) is 
velocity be uniform. 

Vilr=0 = vil~=x = 0 ,  i =  1,2,3. (l.il) 

This is required to facilitate discretization of the Laplacian. For pressure, we have the boundary 
condition 

p It=0 = 0. (1.12) 

The Laplacian of the functions V i (i = 1, 2, 3) in terms of the variables (r, 0, r takes the form 

AV i r ( 0  (rvovi~)  E ( v o v i ~  1 c32V i (1.13) 
= vw 2 \-~r k -'~-rY + 3~ kr O~ ; + v ~ 3~ - - - Y "  

Thus, Eqs. (1.6)-(1.9) with boundary conditions (1.11) and (1.12) have to be solved in the unit ball. 
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2. D i sc r e t e  Lap lac ian  and  Disc re t e  Stokes  Equa t ions .  We di,;cretize the Laplacian (1.13) with 
the uniform boundary conditions (1.11) by using the procedure in [3]. 

Thus, we get a discrete Laplacian in the form of an h-matrix 

2 l 
H = ~  Y'~'Ak| L-~21+l.  (2.1) 

k = 0  

v~2 \ ~ \ -g-l]) 
with the boundary conditions 

Here, the prime indicates that the term with k = 0 is taken with the coefficient 1/2; the symbol | designatee 
the Kronecker product of the matrices, and h is a matrix of order L x L with the elements 

hkij=cosk 2~r(i - j )  ( i , j=  l ,2 , . . . ,L);  
L 

Ak is the matrix of the discrete operator corresponding to the differential operator 

+ ~ ' ~  v 2 0 ~  2 ' . . . ,  

r It=0 = (I)17=1 = 0. 

To discretize differential operator (2.2), (2.3) we take a mesh with n nodes for 

7~ 
0 v = ~ ' ( Y v + l ) ,  Yv=COSe~, 

and apply the interpolation formula 
n 

.=: ~(-..11"-: 

5/2 - -  

- - ( y  -y~) 
S l n  ~ v  

(2v - 1)~r 
2n , v = l ,2 , . . . , n ,  

(2.3 

y = (2~  - ~ ) / ~ ,  ( 2 4  

where gv = g ( ~ )  (~' -= 1 ,2 , . . . ,  n); Tn(y) = cos (n arccos y). 
Differentiation of the interpolation formula (2.4) gives the first and second derivatives with respect t. 

in relations (2.2). 
We choose a mesh with m nodes along r 

r t ,=( l+zv) /2 ,  z v = c o s x v ,  X~=(2t/-1)~r/(2m), v = l , 2 , . . . , m ,  

and employ the interpolation formula 

q(r) = E ( 1 vTm-lz)(r- 1)rqk , q~ = q(rv), z = 2 r -  1. (2.: 

~ = 1  m _ ) ( r ~  - 1 ) r ~ ( z  - z ~ )  
sm Xv 

Differentiation of the interpolation formula (2.5) gives the first and the second derivatives with respe( 
to r, in expression (2.2). By differentiating interpolation formulas (2.4) and (2.5), we obtain the values, 
derivatives with respect to # and r that enter the left-hand side of the continuity equation (1.9). 

To discretize the derivatives of pressure with respect to r, we use the interpolation formula 

~: Tin(z) r qk (2 
q(r)  = ~ J ' _ l ' ~ - :  

= m r~(z  - z~)  
S l n  X v  

The quantities entering formula (2.6) are determined above. The values of the first derivatives 
pressure with respect to r on the left-hand side of relations (1.6)-(1.8) are obtained by differentiating t] 
interpolation formula (2.6). 
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To derive a formula for numerical differentiation with respect to c2, we consider the interpolation 
formula 

2 21 
s ( : ) = ~ D z ( : - - : k ) ~ k ,  L = 2 1 + 1 ,  (2.7) 

k=0 

where 
l 

s k = s ( : k ) ;  : k = 2 ~ k / L  ( k = O ,  1 , . . . , 2 I ) ;  D t ( ~ - : k ) = O . 5 §  
j = l  

We determine the values of derivatives with respect to T by differentiating formula (2.7). 
To obtain discrete Stokes equations, one should replace the derivatives in Eqs. (1.6)-(1.9) by discrete 

derivatives found by differentiating the corresponding interpolation formulas (2.4)-(2.7). The Laplacian is 
replaced by the matrix H. In place of the functions V 1, V 2, V 3, and p, the discrete Stokes equations contain 
their values in the nodes of the mesh (0v, ru,~2k), u = 1 ,2 , . . . , n ,  # = 1 , 2 , . . . , m ,  and k = 0, 1,2,. . . ,21. As 
a result, we have a system of 4 m n L  linear equations. The system of discrete equations cannot be written in 
explicit form because of its awkwardness. For instance, for m = n = 10 and L = 9, the system has the order 
of 3600. 

To study the condition number of this system of linear equations, the eigenvalues of the Laplace operator 
with boundary conditions (1.11) were calculated. To do this, it is sufficient to calculate the eigenvalues of 
the matrices Ak, k = 0, 1 , . . . ,  l [4]. Numerical experiments have shown that the eigenvalues of the Laplace 
operator have two condensation points, 0 and - r162 Thus, the values of the norms of the matrices H and H -1 
are large. They grow as the number of nodes increases. This is what distinguishes exterior problems from 
interior ones. 

The matrix of the discrete Stokes equations is of block form 

H 0 0 P1 
A =  0 H 0 P2 

0 0 H Pa ' 
Ul u2 u3 0 

where H is a discrete Laplacian, Pi (i = 1,2, 3) are matrices obtained after discretizing terms with pressure, 
ui (i = 1, 2, 3) are matrices obtained after discretizing the discontinuity equation. All these matrices are of 
order R • R (R  = m n l  is the number of nodes). We denote 

An-1 = 0 H , vn = (Ul,U2,U3), Un = (P1, P2, P3)'. 
0 0 

The reciprocal of the matrix A is sought in the form 

A-1  = Pn-1 rn 
q,, Ol-u 1 " 

Here, Pa-1 is a matrix of order 3R x 3R, qn = (ql, q2, q3) where qi (i = 1, 2, 3) are matrices of order 
R • R, rn = ( r l , r2 , r3) '  where ri (i = 1,2,3) are matrices of order R x R. We then get qn = - ~ l v n A ~ 1 1 ,  
Pn-1 = A ~ l l  "4- A ' ~ l l U n ~ l v n A - ~ l  1, and rn = -A '~ l lUnO~ 1 ((~n = - u l H - l p l  - u2H- lp2  - u3H-lp3  is a 
matrix of order R • R). 

Thus, it is easily seen that, because of the properties of the matrices H and H -1 described above, 
the value of the norm of A and A -1 is large. This value grows as the number of nodes increases, i.e., the 
system of discrete Stokes equations is poorly conditioned. This results from the poorly conditioned differential 
Stokes equations in the unbounded region (i.e., in the exterior of the axisymmetric body) and is caused by 
the spectrum of the Laplace operator in the region under consideration. 

An approximate method for solving poorly conditioned discrete Stokes equations is considered below. 
We now turn to discussing the properties of the discretization carried out. The classical approach to 
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discretization of the equations of mathematical physics consists in replacing derivatives with finite differences. 
This approach has an essential shortcoming: it is not sensitive to the smoothness of solution of the problem 
in question, i.e., the discretization error does not depend on the smoothness of the unknown solution. 
In other words, the finite-difference algorithms lead to nmnerical methods with saturation [5]. For this 
reason, an interpolation of solution with polynomials (algebraic or trigonometric ones) was applied above 
for discretization of the Stokes equations. The derivatives of the sought-for functions in the Stokes equations 
were calculated by differentiating the interpolation formulas. This method of discretization has no saturation, 
because the smoother the unknown function, the more accurately it is approximated by the interpolating 
polynomial [5]. Such a property of the algorithm makes it possible to carry out calculations on a fairly scarce 
mesh, when the condition number of the discrete Stokes equations is not very large. 

3. D e t e r m i n a t i o n  of  P r e s s u r e .  It has been pointed out above [see (1.3)] that pressure is a harmonic 
function. Let us consider a more general eigenvalue problem for the Laplace operator in the unit ball with a 
deleted center: 

p i _-0 = 0 (3.1) 

We are interested in the eigenfunctions of the boundary problem (3.1) that correspond to the zero 
eigenvalue A = 0. The replacement of relation (1.3) by a more general problem (3.1) can be explained by the 
fact that the methods for solving finite-dimensional eigenvalue problems are very well developed [6]. So are 
the methods for discretizing a Laplacian [3, 4]. 

In discrete form, the boundary-value problem (3.1) can be reduced to calculating the eigenvalues of an 
h-matrix, i.e., to solving the algebraic eigenvalue problem 

H p  = A p (3.2) 

(p is a vector with length nmL whose components are the values of the sought-for pressure in the nodes 
of the mesh). The matrix H is constructed by using formula (2.1). However, the interpolation formula (2.6) 
subject to the boundary condition [see (3.1)] is employed for numerical differentiation with respect to r. 
Solving the finite-dimensional problem (3.2), we determine the eigenvalues close to zero. The corresponding 
eigenvector is determined within a constant factor c. Having substituted the found solution into the discrete 
Stokes equations, we-easily determine the velocity components from the equations of motion. To do so, one 
should reverse the h-matrix by using the formula in [4]: 

H_  1 2 z 
= ~ y] 'h~-a  | hk, L = 2 / + l  

k=0 

(the formula can be verified by immediate multiplication) and calculate the product of this matrix and some 
vectors. It remains now to choose the constant c in such a manner that the continuity equation is satisfied. 
We substitute the velocity components found above into the continuity equation and obtain a set of R = mnL 
equations for determining the constant. This is a set of overdefined linear equations that serves for discarding 
"unnecessary" solutions and finding the constant c. For the desired solution, the constants c, determined from 
the discrete continuity equation, must necessarily be approximately equal to one another. Any of them or their 
arithmetic mean can be taken as the value of the constant that we are looking for. For irrelevant solutions, 
the constants c differ greatly from one another. Such solutions must be discarded. 

Note that one can reduce calculations of the eigenvalues and eigenvectors of the h-matrix to calculating 
those of the matrices -\k (k = 0, 1 , . . . ,  l) whose order is smaller [4]. Thus, it is possible to determine all the 
eigeiivalues and eigenvectors of the h-matrix of order 900 • 900. 

4. R e s u l t s  of  N u m e r i c a l  E x p e r i m e n t s .  The numerical experiments were conducted for a ball with 
a = b = 1 and for an ellipsoid of revolution with a = 1 and b = 0.5 or 0.95 [see (1.5)] on a mesh with 225 
(m = n = 5 and L = 9), 900 (m = n = I0 and L = 9), and 2025 nodes (m = n = 15 and L = 9). a flow with 
parameters v~ = 1 and v~  = v 3 = 0 was taken as the boundary condition for velocity in the free stream. In 
all the calculations, Re was taken to be 0.01. 

Let us first discuss the results of the calculations for the ball. Two close-to-zero eigenvalues of the matrix 
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A0, )~24 = - 0 . 3  �9 10 - 5  and A25 = -0.7 �9 10 -18. were determined on the mesh with 225 nodes (m = n = 5 and 
L = 9). The remaining eigenvalues had order between 10 -2 and 102. The only close-to-zero eigenvalue was 
determined for the matrix AI: "~24 ---- - - 0 . 5 "  10 - 5 .  Other eigenvalues were of order 10-2-10 a. The matrices 
A2, An, and A4 have eigenvalues of order 10-2-10 a, 10-t-104, and 10-1-104. respectively. Consequently, they 
do not have eigenvalues that can be interpreted as close to zero. The second calculation was carried out on 
a mesh with 900 nodes (m = n = 10 and L = 9). The matrix A0 has two real close-to-zero eigenvalues: 
A99 = 0.2.10 -11 and A100 = -0 .4 .10 -18. In addition, there is a pair of complex close-to-zero eigenvalues with 
real parts A97 = A98 = -0 .5 .10 -7. Other eigenvalues are of order 10-a-10 a. The matrix A1 has a close-to-zero 
eigenvalue A100 = -0 .2 .10  -12. In addition, there is a pair of complex close-to-zero eigenvalues with real parts 
A98 = A99 = -0 .2 .10  -8. Other eigenvalues are of order 10-4-104. The eigenvalues of matrices A2, An, and A4 
are of order 10-6-105, 10-4-103 and 10-3-105, respectively. Thus, the calculations conducted show that for 
the unit ball the h-matrix has four families of eigenvectors which yield close-to-zero eigenvalues (note that 
the eigenvalue of the matrix A1 is twofold [4]). 

The calculation of the eigenvectors of the h-matrix for the ball was conducted on a mesh with 900 
nodes (m = n = 10 and L = 9). The four sought-for families of eigenvalues for problem (3.1) in the unit ball 
can be easily guessed. The eigenvectors of the h-matrix, corresponding to the close-to-zero real eigenvalues of 
the matrix A0, yield two families of eigenfunctions independent of ~: 

Pl = cr  (4.1) 

corresponds to the eigenvalue A100 of the matrix A0, and 

p2 = clr ln((1 - cos ~)/(1 + cos ~)) + c2r (4.2) 

corresponds to the eigenvalue )~99 of the matrix A0. Speaking more precisely, one of the invariant subspaces 
of the Laplace operator (3.1), corresponding to the zero eigenvalue, has form (4.2), i.e., is two-dimensional. 
Calculations give two close-to-zero eigenvalues of the matrix A0 of order 100 x 100 (A100 and A99). As has been 
pointed out above, an eigenfunction of form (4.1) corresponds to the eigenvalue kl00 (this fact is confirmed 
by numerical calculations), and some eigenfum:tions of family (4.2) corresponds to the eigenvalue A99. 

The eigenvectors of the h-matrix, corresponding to the real close-to-zero eigenvalue A100 of the 
matrix A1, yield two families of eigenfunctions dependent on ~o 

pa = car 2 sin ~ cos ~o; (4.3) 

P4 = c4 r2 sin ~ sin ~o. (4.4) 

Family (4.3) of eigenfunctions corresponds to the solution in [7] for a ball. Families (4.1), (4.2) and 
(4.4) yield irrelevant solutions which do not satisfy the continuity equation (see Section 3). 

Next, the constant c3 was calculated from the continuity equations (see Section 3). The arithmetic mean 
of constants close to one another was taken as the desired constant. These constants were determined from 
the discrete continuity equation. The value c3 = 144.09 was obtained (the eigenvector of the matrix A1, 
corresponding to the eigenvalue A100, was normalized by the maximum of its length). The resulting 
approximate solution was compared with the exact one [7]. The calculations show that the maximum relative 
error equals 0.26%. 

The second calculation was carried out for an ellipsoid with the semiaxes a = 1 and b = 0.5. It was 
found on a mesh with 225 nodes (m = n = 5 and L = 9) that the matrix A0 has one close-to-zero eigenvalue 
A2s = -0 .3  �9 10 -s.  Other eigenvalues were of the order of 10-2-102. The eigenvalues of the matrices A1, 
A2, Aa and A4 were of order 10-2-10 a, 10-2-104, 10-1-104 and 10-1-105. Thus, the number of nodes is 
apparently insufficient. On a mesh with 900 nodes (m = n = 10 and L = 9), the matrix A0 has two close- 
to-zero eigenvalues: )~a9 = 0.4.10 -6, )~100 = 0.2.10 -9. Other eigenvalues are of the order of 10-3-104. The 
matrix A1 has one close-to-zero eigenvalue: An4 = 0.3 �9 10 -5. Other eigenvalues are of the order of 10-3-104. 
The matrices A2, An, and A4 have eigenvalues of order 10-a-105, 10-3-10 s, and 10-2-106. 

Further, calculations on a mesh with 2025 nodes (m = n = 15 and L = 9) were carried out. The 
eigenvalues of the matrices A0 and At were calculated. The matrix A0 has two close-to-zero eigenvalues: 

687 



,~224 = -0.1 �9 10 -9 and )~225 = -0 .2  �9 10 -13. Other eigenvalues are of the ~~r,%r of 10-5-104. The Matrix A1 
has one close-to-zero eigenvalue A221 = -0.1 �9 10 -8. Other eigenvalues are of the order of 10-4-10 s. Thus, the 
h-matrix for the ellipsoid also has four families of eigenvectors corresponding to close-to-zero eigenvalues of 
the matrices Ao and A1. We are interested in an eigenfunction that is even with respect to T and corresponds 
to a close-to-zero eigenvalue of the matrix A1 (a disturbance of the corresponding eigenfunction for the ball). 
An approximate calculation of this eigenfunction was conducted on a mesh with 900 nodes (m = n = 10 and 

L = 9). 
The calculation results show that the constants ci (i = 1,2, . . . ,900)  differ from one another rather 

significantly, their mean value being 318.31. It is obvious that 900 nodes are insufficient to find this 
eigenfunction (we should not forget that the eigenvalue of the matrix hi  corresponding to the desired 
eigenvector has order 10 -5, i.e., is not sufficienly close to zero). To check this hypothesis, calculations for 
an ellipsoid with the semiaxes a = 1 and b = 0.95 were carried out on the mesh with 900 nodes. The 
eigenvalues of the matrices A0 and A1 were calculated. The matrix A0 turned out to have two close-to-zero 
e i g e n v a l u e s :  ,~99 - -  0 . 2  �9 10  - 1 1  and ~100 = 0.1 �9 10 -16. In addition, there is a pair of complex close-to-zero 
eigenvalues with real parts A97 = ~98 = -0 .6 -  10 -7. Other eigenvalues are of the order of 10-3-103. Th~ 
matrix A1 has one real close-to-zero eigenvalue ~100 = 0 .2 .10 -12 and a pair of complex eigenvalues with 
real parts A98 = A99 = -0 .2  �9 10 -8. Calculation of the eigenvector was conducted for the eigenvalue ~100 ot 
the matrix A1. The spread of ci's (i = 1, 2 , . . . ,  900) was between 147.85 and 160.57, the mean value bein~ 
c = 152.36. The maximum relative error between the found solution and the solution in the ball was 6% 
Thus, to employ this approximate solution of the discrete Stokes equations, one should use a calculation mest 
such that the close-to-zero eigenvalues of h-matrix (3.2) are of the order of 10 -12. 

An AT-386 PC with 640 K of RAM operating at 25 MHz was used for the calculations. As is seel 
from the calculations described above, one can employ numerical methods for studying the flow of a viscou: 
incompressible liquid around bodies close to a ball at small Reynolds numbers. A more powerful computer i: 
required to study flows around bodies of complex shape. 
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